Image sensor and detector characterization

To characterize, test, and calibrate optical sensors, you need a light source with high brightness and a broad continuous spectral coverage. A supercontinuum source lets you generate tunable narrowband lines or fully adjustable broadband spectral synthesis.

Light sensor on a card of digital

Calibration makes sensors intelligent

The market for optical sensors is growing as we tend to put them into more of our everyday necessities and gadgets. But for optical sensors to work properly, they need – like any other measurement instrument – to be calibrated.

Calibration and clever processing add value to inexpensive sensors and transform them into power meters, chemical sensors, ambient light sensors, etc. The calibration process adds value to the sensor by defining it relative to other sensors.

Almost any calibration process consists of submitting a sensor to well-defined and traceable stimuli and recording the response. In most cases, many different stimuli must be recorded to get the full picture.

Most light sources have limitations

Color-sensitive optical sensors must be calibrated for a range of wavelengths. If a high spectral resolution or a high spatial resolution is needed, only a few sources are suitable. And if both are needed, even fewer sources can be used.

Laser arrays and LED arrays offer relatively high powers and especially lasers exhibit high brightness. But they lack spectral flexibility and continuous spectral coverage.

Incandescent lamps and most gas discharge lamps offer a broad and continuous spectral coverage but with poor brightness. The lack of brightness can be a challenge in applications where high spatial resolution is required for instance if there is a need to transmit the light far in free space with low loss to the device under test (e.g. inside a vacuum chamber). Furthermore, if filtering equipment requires a high spectral resolution, high brightness is an advantage.

Why is that? Many narrowband tunable optical filters and monochromators require a relatively high brightness input to work efficiently. An example could be a monochromator where high spectral resolution requires a small input slit, which causes a significant power loss for low brightness sources.

Bright and broad continuous light

Supercontinuum sources can overcome the above challenges as they have a high brightness and a broad continuous spectral coverage.

In conjunction with the appropriate filter technology, supercontinuum sources can be configured to freely generate tunable narrowband lines or fully adjustable broadband spectral synthesis, i.e. generate a user-specified spectrum such as a standard illuminant. With a SuperK supercontinuum source, you can cover any single color, any complex spectrum in any shape.

This allows calibration instrument builders to make rapidly tunable sources to map out the performance of the device under test as well as generate broadband standard illuminants for control purposes. These are features that make the supercontinuum source ideal for the calibration of optical components.

Many years’ experience enables NKT Photonics to offer completely customized and full turnkey supercontinuum calibration solutions to our customers. All solutions include fully integrated sources, filters, software, and delivery optics and are based on a field-proven instrument architecture, industrial and scalable production, and backed by a worldwide support network.

References