Ophthalmic imaging

Ophthalmic imaging is the branch of ophthalmology that deals with imaging of the eye diagnosing the anatomy, physiology, and diseases of the eye.

Techniques used in ophthalmic imaging

Optical Coherence Tomography (OCT)

Learn more about the basic principles of supercontinuum powered OCT.

Ji Yi, 2013; Visible-light optical coherence tomography for retinal oximetryUsing SuperK as OCT light to extract hemoglobin oxygen saturation (sO2) in individual retinal vessels. They established a comprehensive analytical model to describe optical absorption, optical scattering, and blood cell packing factor in the whole blood and fit the acquired vis-OCT signals from the bottom of each imaged vessel.
Ji Yi, 2012,; Structured interference optical coherence tomographySuperK was used for illumination in order to get an axial resolution of ~1.5μm in air (650-800 nm)

Scanning Laser Ophthalmology (SLO)

Wolf M. Harmening, 2014; Mapping the Perceptual Grain of the Human RetinaUsing AOSLO imaging to map the cone mosaic with subcellular resolution. The SuperK was the light source; 842 nm and 543 nm at the same time
Francesco LaRocca, 2014; True color scanning laser ophthalmoscopy and optical coherence tomography handheld probeThe SuperK was used as SLO source (430-700 nm) for three colors. True color SLO retina may provide better sensitivity, this higher sensitivity to color variations in the retina, the “true color” SLO could potentially provide earlier detection of age-related macular degeneration (AMD) by earlier visualization of druses, which appears as yellow-white spots in the retina.
Drew Scoles, 2013; In vivo dark-field imaging of the retinal pigment epithelium cell mosaicSuperK was used as the light source, centered either at 565 or 680 nm, with a 10 nm bandwidth
Wolf M. Harmening, 2012; Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eyeSuperK is provided light for the 842 nm imaging channel as well as the red (711 ± 12 nm) and green (543 ± 11 nm) channels used for stimulation

Articles and background info